小學就學的幾何學竟能發展成相對論?人稱天才的愛因斯坦曾向這個人求助:「我要瘋了!」

2019-10-25 16:56

? 人氣

愛因斯坦「驚人」的重力方程式,是建立在度規張量、最小變分方法等等幾何學成就之上。(圖/unsplash)

愛因斯坦「驚人」的重力方程式,是建立在度規張量、最小變分方法等等幾何學成就之上。(圖/unsplash)

廣義相對論與幾何學

愛因斯坦的廣義相對論中,以重力方程式來描述時空中的物質如何影響整個時空的幾何,顛覆了牛頓的古典時空概念,並成為廣義相對論的核心。科學家用重力方程式預測了黑洞存在、宇宙膨脹、重力波等等現象,後來一一獲得驗證。不過,在愛因斯坦建構重力方程式的過程,幾何學家在背後擔任著「藏鏡人」的角色......中研院數學所研究員鄭日新,在2019 年院區開放日的科普演講「幾何學--重力研究的好幫手」,跟民眾暢談愛因斯坦與幾何學家的故事。

先別管相對論了,你真的懂幾何學嗎?

大家都聽過「一個成功的男人,背後一定有個偉大的女人。」但你應該沒想過,一個成功的物理學家,背後可能有著好幾個偉大的幾何學家──愛因斯坦在重力方程式上的成功,就是一個經典的例子。

愛因斯坦「驚人」的重力方程式,是建立在度規張量、最小變分方法等等幾何學成就之上。圖/研之有物
愛因斯坦「驚人」的重力方程式,是建立在度規張量、最小變分方法等等幾何學成就之上。(圖/研之有物)

「幾何學,不就是數學課上教過的那些三角函數、充滿各種性質的各種圖形?怎麼會跟相對論扯上關係呢?」

我們一般認知的幾何屬於「歐氏幾何」,是以西元前 330~275 年古希臘數學家歐幾里德所撰寫的《幾何原本》做為基礎,歐氏幾何的一切性質都是建立在平面上的。但近代許多數學家紛紛找出不同的幾何,例如:建立在球面上的正曲面幾何、馬鞍形狀曲面上的負曲面幾何等等。其中一個突破性的概念,就是黎曼於 19 世紀中葉提出的「黎曼幾何」。

黎曼幾何中,所有度量的幾何量和選取的座標無關,例如兩點間的「長度」,是存在於黎曼幾何的內在性質,而不是我們一般認為的從外觀去判斷、測量而得。

黎曼幾何這個「和座標無關」的特性,後來成為愛因斯坦重力方程式誕生的重大關鍵。

伯恩哈德·黎曼 ( Bernhard Riemann,1826~1866年)德國數學家,黎曼幾何學創始人。黎曼幾何中,所有度量的幾何量和選取的座標無關,成為愛因斯坦發展廣義相對論最重要的數學工具之一。圖/研之有物
伯恩哈德·黎曼 ( Bernhard Riemann,1826~1866年)德國數學家,黎曼幾何學創始人。黎曼幾何中,所有度量的幾何量和選取的座標無關,成為愛因斯坦發展廣義相對論最重要的數學工具之一。(圖/研之有物)

不受座標影響的重力

愛因斯坦在 1905 年完成狹義相對論後,便一直想解決重力的問題。在牛頓所發展的古典力學中,空間中的質量分布會產生重力場,也就是一旦知道了空間中每一點的質量分布,就能找出每一點的重力位能。

然而,如果將愛因斯坦的狹義相對論加入考量,立刻產生問題。狹義相對論為了解決光速恆定,推導出質量會隨著速度而改變,這意味著,當兩個人所在的慣性座標不同──例如一人靜止於地面,另一人在等速前進的火車上,兩人看待的物體質量也會不同。那麼,宇宙中的質量分布及重力場,不就會受到座標的不同影響了嗎?

由於在愛因斯坦發展重力理論之前,著名的數學物理學家馬克士威(James Clerk Maxwell)已經在 19 世紀中葉提出完整的電磁學理論──馬克士威方程式組。這組方程式不論在任何慣性座標下,數學形式都不會改變,稱為符合「勞倫茲轉換」(Lorentz transformation)。因此愛因斯坦深信,重力理論一定也有符合某種廣義的勞倫茲轉換的方程式,不會因為座標改變而不同。於是,愛因斯坦踏上了尋找重力方程式的路程。

關鍵字:
風傳媒歡迎各界分享發聲,來稿請寄至 opinion@storm.mg

本週最多人贊助文章